三数之和
题目描述
给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请
你返回所有和为 0
且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
提示:
- 3 <= nums.length <= 3000
- -105 <= nums[i] <= 105
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/3sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
我的答案
1 | func threeSum(nums []int) [][]int { |
思路:若想要不重复则先对数组进行排序,并且要保证
- 第二重循环枚举到的元素不小于当前第一重循环枚举到的元素;
- 第三重循环枚举到的元素不小于当前第二重循环枚举到的元素。
- 对于每一重循环而言,相邻两次枚举的元素不能相同,否则也会造成重复。
时间复杂度:O(N^2)O(N2),其中 NN 是数组 \textit{nums}nums 的长度。
空间复杂度:O(\log N)O(logN)。
解题思路
穷举法无法通过时间限制
题解
1 | import "sort" |
总结
- 排序+双指针
Comments
Comment plugin failed to load
Loading comment plugin